History-Preserving Bisimilarity for Higher-Dimensional Automata via Open Maps
نویسندگان
چکیده
We show that history-preserving bisimilarity for higher-dimensional automata has a simple characterization directly in terms of higher-dimensional transitions. This implies that it is decidable for finite higher-dimensional automata. To arrive at our characterization, we apply the open-maps framework of Joyal, Nielsen and Winskel in the category of unfoldings of precubical sets.
منابع مشابه
Homotopy Bisimilarity for Higher-Dimensional Automata
We introduce a new category of higher-dimensional automata in which the morphisms are functional homotopy simulations, i.e. functional simulations up to concurrency of independent events. For this, we use unfoldings of higher-dimensional automata into higher-dimensional trees. Using a notion of open maps in this category, we define homotopy bisimilarity. We show that homotopy bisimilarity is eq...
متن کاملPartial Higher-dimensional Automata
We propose a generalization of higher-dimensional automata, partial HDA. Unlike HDA, and also extending event structures and Petri nets, partial HDA can model phenomena such as priorities or the disabling of an event by another event. Using open maps and unfoldings, we introduce a natural notion of (higher-dimensional) bisimilarity for partial HDA and relate it to history-preserving bisimilarit...
متن کاملOpen Maps Bisimulations for Higher Dimensional Automata Models
The intention of the paper is to show the applicability of the general categorical framework of open maps to the setting of two models – higher dimensional automata (HDA) and timed higher dimensional automata (THDA) – in order to transfer general concepts of equivalences to the models. First, we define categories of the models under consideration, whose morphisms are to be thought of as simulat...
متن کاملHigher Dimensional Transition Systems
We introduce the notion of higher dimensional transition systems as a model of concurrency providing an elementary, set-theoretic formalisation of the idea of higher dimensional transition. We show an embedding of the category of higher dimensional transition systems into that of higher dimensional automata which cuts down to an equivalence when we restrict to non-degenerate automata. Moreover,...
متن کاملHereditary History-Preserving Bisimilarity: Logics and Automata
We study hereditary history-preserving (hhp-) bisimilarity, a canonical behavioural equivalence in the true concurrent spectrum, by means of logics and automata. We first show that hhp-bisimilarity on prime event structures can be characterised in terms of a simple logic whose formulae just observe events in computations and check their executability. The logic suggests a characterisation of hh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 298 شماره
صفحات -
تاریخ انتشار 2013